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(U) The results or aircraft investigations of atmospneric :zurbulence
betwaen 106 m to 3 km in the area arcund the city of Dolgoprudnyy
carried out by *the Central Aerclogical Observatory in 1946 are
analyzed, A mateorograph and an accelerograph for recording acceale-~
ration in & vertical plane were instalied on the aircraft. During
the flighls vertical soundings were made from areas a* heights of
100, 3CC, 500, 1000, 1500, 2000, and 300C m and at the surface of
the earth. The turbulent exchange (K) was computed, Individual
flights analyzed with the aid of grephs of the vertical prefile of
the turbulence coefficient and the daiiy variation of the turbulence
coefficlent ai different altitudes., Under znticyclonic conditions
the turbulence coefficient has a distinct vertical profile and its
maximum is around 13 hours at all levels., Freguently one to two
maxima were observed and their values are determined ty the ithermal
stratification of the atmospnhere. The turtulence cc=afficient
manifests a daily variation. The maiimum K values are rezached
simultaneously at all levels in the caytime, but the beginning

of daily variations is most clearly manifestedé at 100 wm., OCrig.

art, has: 3 rigures,

AFSC

FoRM -
o @ { BTG OVEMPRIET, DRC 447 -

-

IR PARISUI I w MU A IrAS,  Nevaty +

unsen W 2

- ey hs » - .= mm‘ .mm : m‘




) DATA HAVDLIHG PAGE

f
t
; DI.ACCESSION HO.  S-COCUAENT LOC WTOPIC TAGS
]

T3

TT9500 atmospheric turbulence,
IW-?H&E THEQRY OF STPATIAL-
]
!

atmespheric wind field

turbulent flow,

TEMPORAYL, CORRELATION OF
VELGCITIES IN AN ISOTROPIC
TURBULFNT FLOW

g I SUSSECT A2Ea

i ‘ ‘ 0k

oL ' 42-AUTHDR/CO-LUTKORS

0-DATE OF IKFO

B

SMIRNOV, V. I.; lG—SHAPIRQg R, SH.

Rk 3 3-300RCE 7 - D5CURENT RO,
TSEHTRAL!NAYA AEROLOGICHESKAYA g FTD-#T~24-41-69
OBSERVATORIYA. TRUDY (RUSSIAN) i9-PROJECT WO.
723%02-78
LI.SZCURITY AND DOWNGRADING INFOAUATION $4-CONTRE. MARXIRGS (¥T-HEADER CLASK
uUReL, O NONE UNCL
76-REEL FRAME NO. {77.SUPERSEDES 73-CHAKGES w-iﬁio‘il&ﬂﬂCAL NO OF FAGES i
1889 01¢2 UR 31
i CORTRACT MO, X REF ACC. WO, PUBLISKING DATE TYPE PRODUCT REVISION SREC
- 3 | 65-~AT7034013 G4 -00 1 TRAMSLATION NONE
S STEP HO. 'ACCESSION NO.
B 02-1R/2789,/67 /000 /078 /0080 /0099
- ABSTRACT .
e - (U) The deductive turbulence theory proposed by Chandrasekher is
. vased on postulates of hcmogenedty, isotropy and stationary state

1 and also on the hypothesis of guesi-normality (hypothesis of

. Millionshchikov) associating correlation tensors of the second

T and fourth rank, In this peaper the authors generalize the eguations
C ’ of Chandrasekhar for the case of non~-stationary turbulence. Threre
is derived a dynamic equation for determining the scalar correia- i
tion tensors describing & two point space~time ¢ ‘relation of the
velccitles of turbulent flow and constituting & generalization of
the esquation of Chandrasekhar for stationary turbulence. In the
cerivation there were assumed conditions of homogeneity and isctrory
+nd also the gensralized nhypothesis of gquasi-ncrmal disrribution cf
velocities, In the case of the direct derivation of the stationary .
equation there is cobtained a psir of eguations that have not teen 1
consldered by Chandresekhser, But these equations have tc be disre~
garded because they cannot be obtained {rom & non-sftaticnary egua-
tion., In principle it is possibie to cbtain another squation fer
non-stationary turbulence which has not yet been investigszte T
generalized eguation of Chandrasekhar correctly describez the las
stage ¢ff the origin of turbulence. The stationary eguation of
Char:jrasekhar for the spatial-temporal longlitudinal corrciution
functlon can be sciveé by representing the solution in & power
z2ries, OQOrig, art., has: 2 g}zures, 112 fermuias, 3
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DAILY VARIATION IN THE TURBULENCE
COEFFICIENT ABOVE FLAT TERRAIN

V. D, Litvinova

Results are given of aircraft investigations
of turbulence around Dolgoprudnyy from an altitude
of 100 m to 3> km, It was found that under anti-
cyclonic conditions the maximum value of the
turbulence coefficlient at all levels 18 observed
around 1300 hours, The velue of the maxlimum
depends on the thermal stratification of
atmosphere. Diurnal variations in the turbulence
iggfficient are most noticeable at a height of

m,

For investigation of a number of physical processes in the
atmosphere 1t 1s necessary to know the intensity of turbulent
exchange of heat, molsture, and momentum,

Experimental investigations of the conditions of appearance
and distribution of turbulence were conducted at TsAO (Central
Aerological Observatory), GGO (Main Geophysical Observatory),
and others. TFor free atmosphere the most detalled investigations
of varlability of the turbulence coefficient with time, helpnt,
andi horizontal extent are glven in the works of P. A, Vorontzov {1},
N. 7Z. Pinus {5], and V. Ye, Minervin 4],

In this work, according to data from flights conducted by
TSAO in 1946 on a P0-2 aircraft in the Dolgoprudnyy area, certain
characteristics of turbulent exchange in the lower troposprers are
examined,

TTD=-NT-24-41-69 1
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The aircrafs carried a weteorograph anu an accelerograph of

type 5P-11, intendecd for recording g of trr aircraft In the vertical
pilene, During flights vertical sounding was made of the atmosphere
with platforms st helights of 104, 300, 50¢, 1600, 1500, 200G, and
3000 m above the earth's surface., The durasarnion of recording of
sccelerograpl on these platforms did not exceed one to two minutes.
T ail 48 flights were mede, one or two fiights a day, with four
series of quickenad soundings of the atmosphere being made on three
tc five flights daily.

in 1965 all data from these flighis was reanalyzed, coefficients
of turbulent exchange were cslculated, and graphs of dependence
of the coefficient of exchange on heights and time of day were
plotted. The coafficient of turbulent exchange was calculated vy
the ILyapin-Dubov formula, definitized tc M, A, Germawn in work {2 :

Ko Viwiar )
%

vhere ¥ ~ average flight speed of aircraft on given platform,
Wl — average absolute veloeity of vertical gust of air, during
the calcuiation of wnich tne mechanical and flight characteristics
of the aircraft were cconsldered, Ay — average time of preservation
of sign of pulsstions in speed, %'~ value of transfer function for
th2 given type of aircraft, given in work [31.

Below will be examined unly cases of guickened sounding
of the atmospnere,

1. Flights of 11 August 1946

On 11 August 1945 three fiights were mede at 1377

- 3
1820 hours. Flights passed thnrough the central part of i
Yariable overcast witn weak north and noruLiowest windgs was oh.Served,

Platforms vwere at heights of 100, 500, GUi,, GOO, and 7000 w,

TTDAMT-2L -0 1 <55 2
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R Fig, 1, Vertical profiles of the
L. S turbulence coeffizient. a) 1iI Aug 1946,
- or. - S b) 12 Aug 1046, c) 29 Sep 1945,
| aj 25 oct 10UE.
T - As can be seen from Fig. la during the flight of the aircraft
g e . N, . N . 2
S ; at 1317 hours the value of XK at a height of 100 m was 2% m /¢, at
e : = . 2
E . , 500 i — 18 m?/s, and at 1000 m - 21 m°/s, The value of ¥ then
S ‘ ~
?:}T.: : decreases rapidly to 2 m*/s at a height of 2 km. At a height of
R . ' . .. . -
- 3 km the flight was calm, The vertical temperature gradient varied
T . ar oo F
. | from 0.7 to 0.99/100 m. At a height of 2.8 kam there was an inversion.
A ) At & height of 1.5 km was the lower FrCu and Cu cong boundary.
i e .
) : Unfortunataly, no z recording was mede at this height,
H- \_‘ 'f{.‘ i
e & o In 1532 houvrs the value cf ihe turbulencs coetfficiént at
- O 2 2 z X A s s
b, 2 . 100 m was 18 v°/s, at 500 m — 15 m“/5, and from 1000 m the flight
I ¢ L . . . .
.- - was caixn. The vertical temperature gradient to a height of €3 n
- was 19/100 m, and at higher altitudes 0.75°/100 m. 4t 2.8 k=
et i
t 2 o= Oal/lOO m.
i :‘ . ‘, 2
. ; At 1830 houre the turbulence coefficient at 100 a was 12 m“/s,
B ey P and at 500 m the flight was calm, The wvalue oS ¥ ¢hanged {rom
3 p i - - . . -
;;; 0.7% to 1§/Loo m, and at 2.3 km a temnerature inversion was observed.
¥
SN
E L . . R . P
b % i As csn be secen from Fig, la, maximum iniensity of turhulerce
t e % i was observed at 130C hours, and it gradually weakened toward
i ’ v : : = . 3 - A IR x
A §'~ 18C0; at a height of 1C0 m the value of the iurbulence coefvicient
£, o . 2, 2 o es P g
2o ;;: jecreased frem 24 n/s (at 1300} to 12 w /s (at 1700}, ana at
i y
i P FTD-MT~2k -4 1-59 5
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~00 m decay of turbulence toward evening was still faster: <rom
23 n°/s at 1300 to 15 n”s at 1500, and at 1800 at this height
flight. was absolutely calm, As can ve seen, ~hanges of turbulence
coefficient with height follow well the changes with height cf the
vertiral temperature gradient, especially in daytime hours,. With
decrease of the vertical temperature gradient of the valve cf K
decreases,

2. TFlights of 12 August 1946

Flights passed thrcugh the central part of an anticyclone
during scantily clouded weather with wesk northwest winds at the
surface, Flignts were made at 0552, 05483, 1139, and 1736 nours at
heights of 100, 560, 1000, 200C, and 3000 m. ‘The turtulence
coefficient was calculated for only the last three tlights, since
the first was calm. At 100 m at 0848 hours ths value of )
K= 16 m?/s (Fig. 1b). In the laysr to 300 m were observed rzised
values cf vertical temperature and wind gradients (y = 0.920/100 m,
8 = 0.83 m/s/100 =). In the 300-2560 m layer values of 7Y did not
exceed 0.85?/100 m, and B was not over 0.35 m/s/100 m. At 2560 n
wes an inversion,

Purther flignt in the entire layer sounded was calm. In
113Q hours the oa vertical profile of the turbulence coefficient
two naxima are observed, The first maximum, caused by the
infivence uf the underlying surface, is at a height of 100 m; tve
value ¢f K here is 26 mg/s. The value of the vertical temperature
gracient is 0.86?/1CO n, and that of wind is 7.1 m/s/10¢ ., A:
500 @ “he value of K is 11 m?/s, end then again increases, attaining
18 m?/s at a height of 100 m, Appearance of the second meximum of
the turbulence coefficient can be explained, arparently, by thermal
stratification of the atmosphere. For this layer there zharacteris-
tically is presence of & large value of veritical temperature gradier:
(v = O.979/100 m) and sharp decrease of vertical wind gradient
(to 0.35 m/s/100 m), Above this level flight was calm. B2y 173€ hours
there ic cecay of turtvulence in the entire soundéd laver. “alues

or KX at all neirhts to 1000 m by this time no onger erxeacded

h
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S m fiight was calm. The

several m/s, At heignts of ¢ 300 m
verivical temperature gradient in the 300-1300 m layer equaled
0.82-0.949/100 m and at the surfsce of earth and at high altitudes
was 0,64-0.73°/100 . The value of B to a height of 3000 m wes
2.72 m/s/100 m, and further 0.1-0.% n/s/10C m,

3. Flights of 29 September 1946

Flights passed through the spur of an anticyclone, <Cloudless
weather with weak north winds at the anrface vies observed.

Data obtained in this day are the most interesting. During
the day six flights were made., Therefore ii was possivle to
trace most rully the atmospheric composition tc & heignt of 2 kn.
Filigh's were made at 0640, 0338, 1029, 1238, 1ik33, and 162 hours
at heights of 100, 300, 500, 1000, 1500, and 2000 m,

According to data from five flights vertical profiles of the
turbulence coefficient were plotted. TFor the 1625 fiight the
Turbulence coefficient was not calculated, since turbulence was
not observed continuously, but only at times,

A's can be seen from Fig. lc, at 0640 the turbulence coefficient
at 100 m was 17 m?/s, while at nigher altitudes flight was calm,
In the layer of atmosphere from the earth to 400 m a deep inversion
was ohserved, By 0838 the temperature inversion had vanished and
the vertical temperature gradient incrsased rapidly to 1.000/100 m,
while tbg winé gradient increased to 5.75 m/s/100 m, At 100 m
K = 12 m‘/s. By 1029 the vertical profile of K siganificantly
cnanges. On tne figure ic ssen & weli-defined maximum of thne
turbulence coefficient in the layer from the earth to 00 w, wnere
K = 14-13 m°/s. At neights from 1000 m to £C0C m flight was calm.
Values of vertical tempgerature gradient to & heignht of 1100 m
varied from 0.8 to l.Oé/lOO n, and wira gradient varied rirom
0.2 to 1.0 w/3/1C0 m, By 1238 hours atmospheric turbulenze was
ctrengthened sharply. On th2 profile of the turbulence coefficien:

LR e
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two maxima are observed, At a height of 100 m K = 40 m2/8, and |
then there is a certain tendency toward slight decrease at a

height of 300 m, after which the value of K Increases to 500 m,

where it attains 35 mz/s. At 1000 m K = 31 ma/s. The vertical

temperature gradient iIn this layer is equal to 1°/1000 m, and

that of wind is 0.15-0.58 m/s/100 m. At heights of 1500 and 2000 m i

flight was calm. f
|

By 1433 the vertical profile of K has more smoothed form, 1In
the layer from 100 to 500 m the turbulence coefficient was
20-24 u?/s and at 1000 m was 10 ma/a. In this whole layer the
vertical temperature gradient 1s equal to 19/100 m, that of wind
to 0.15-1,00 m/s/100 m, At 2000 m flight was calm, By 1625 almost 1
full decay of turbulence had teken place, ;

a
}

.I Fig. 2. Dally variation

! of turbulence coefficlient

for various heights,
i

»r :
]

In Mg. 2 is represented daily variation of turbulence
coefiicient at heights of 100, 500, and 1000 m, As can he seern
from the fipure, by 0900 hours turhulence extends to an inslgniflcant '
helght.,, with values of K = 12-17 mg/s being ettained at a nelight
of 100 m. When at 100 m turbulence 1is develoned, Lt starts Lo*
spread upwards, Although turbulence at 100 n starts to develop
conslderably earlier (around 0600), it attains maximum at &ll
neights simultaneously from 1200 to 1300 hours,
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] The value of the turbulence coefficient during thic time is

. 2 . . 2

1o m°/s at 10C m, graduelly dropping with height to 31 m /s at 1000 m,
P!

q‘

hen the intensity of turbulence decreeses and at 1433 K changes
Y0

from 24 mo/s at H = 100 m to 10 m>/s at H = 1000 m.

3

For more detailed consideration of this effect in Fig., 3
it is shown how the value of K changes with time &t various helghté

in daylight hours.

=

P TP, s

xn
5e

A 25

b + “
b |
;.."" 7
:'.L; . ? - " n” 5 h
- N Fig, 3. Time cross section of the
S ' turbulence coefficient for 29 Sep 1946,
s
- i; infortunately, thevre are no night ovservations, Apparently,
§~zi é &t nignt, when in the lower part of the tropospnere temperature
S b stratification becomes stabler, the intensity of turbulence shoulc
T : ' decrease sharply.
3 :
;. 4. Flights of 25 October 1946
; . : Flights passed through the rear pari of a cyclone, where
i._j- ; szcondary frontis, displaced to the south were observed. 1In
gﬁl%' { the Moscow region were observed stratus clouds, weak snowiall at
é-!ff 2 ) times, end norihwest windg,
;mzﬂ, On this day four rlights were mads: sl 07O, 097, i, and
E ¢ : 133% hours., Platforms were made at lower and upher cioud boundaries,
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At O7:0 at heights of i0C and 170 m (at tne .ower cloud boundary)
the aerologist noted moderate bumping of the P0-2 aircraft. The
turbulence coefficient was 12 mg/s at 100 m and 15 m%/s at 250 m
(Fig, 1d). At remaining heights flight was calm.

By 1128 turbulence had strengthened. The turbulence coefficient
was considerable from the lower flight platform to the height of
the lower St boundary, which was at 450 m, At 100 m K was 16 me/s,
while at 300 m the velue dccreased to 1l m?/s, and then increased
at the lower St boundary to 18 me/s. The vertical temperature
aredient in this layer varied from 0.33-0.78/1CO m. The aerologist
also noted moderate bumping at three lower levels., Strengthening

of intensity of turbulence at the lower cloud boundary agrees well
with data from work {4].

At 1335 overloads of the aircraft were observed only in the
forn of bursts, and it was not possible tc calculatz the value
of the turbulence coefficient.

As a result of the foregoing the following preliminary
conclusions can be made.

The turbulence coefficient under anticyclonic conditions has
well-defined vertical profile. On it most freguently are noticeable
one or two maxima, the values of which are determined by conditions
of thermel stratification of the atmosphere.

Jaiues of the turbulence coefficient have deily variation.
Maximur of K 1s attained in the daytime hours at all helghtcs
simul: zneocusly, but the bpeginning of diurnal variztions is most
clearly enrressed for the height of 100 m,
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E THEOCRY OF SPATIAL-TEMrORAL CCRRELATION
oy ' OF VELOCITIES IN AN TISOTROPIC
TURBULENT FLOW

V. 1. Smirnov and B. Sh., Shapiro

T Conditions of homogeneity and isctropy, and
also the hypothesis on quasi-normaiity of velocity
distribution are used for devivation of an eguation
for the Eulerian two-point space-time correlation
function in nonstationary turbulent flow, generali-
izing equation the Chandrasceckhar for stationary
turbvulence, Soiution of the derived equation for
the last stage of degeneration of turbulence agrees
with results ovtained by other authors, A method
R of solving the Chandrasekhar equation by expanding
.. the solution in power series is developed,.
) Coefficients of the series are determined uniquely
if space and time correlation functions are given,
With rapld decrease of derivatives of the corre-
lation function with distance, it is sufficient
s to assign the space correlation function. The
R - time microscale of correlation is determined by
A the mecan sqeuare of velocity, kinematic viscosity,
3 and the space correlation function, There is a
class of universal solutions, i.e., solutions
noct depending on viscosity and intensity of
turbulence, Certain solutions not depending on
the tlme interval are investigated.

e Oy

1. Introduction

Turbulent flow might be simultaneously uniform, isotropic,
and stationary (in a statistical sense) only in the presence within
it of corresponding sources of energy, reple-ishing the decrease
of r~nergy of turbulence due to its dissipatiorn., The theory ol

———y Ty IR TS I RS




S

P

e o %8 R e

AL,

.

turbulence is most simply built around the threse above-mentioned
conditions, and, bypasaing the question of sources of energy,
around introduction of certain more or less formal assumptions.

In 1955-1956 Chandrasekhar offered the deductive theory of
tarbuience [9, 10], based on postulates of ncmogeneity, isotropy,
and stationarity, and alsc on the well-known hypothesis of
quasi-iormality (Millionshchikov nypothesis), assuciating correlation
tensors of second and fourth ranks, On the basis of the Navier-
Stokes -equation for incompressible liquid Chandrasekhar derived &
nonlinear partial differential equation, containing only one unknown
scalar furnction, depending on space and time intervals., 1In view
of the assumed difficulty of solving this equation in the general
case, its author limited himself to finding a solution for the case
when viscosity does not play a role and can be considered egual
to zero, and arrived at the conclusion that theory does not contradict
the statements of the well-known Kolmogorov theory on the inertial
interval,

In developing the Chandrasekhar method, S. Panchev derived
a dynamic equation for the space-time correlation function and an
equation fcr other correlation functions [1l1].

Later A, I, Ivanovskiy and I. P. Mazin showed [2] that with
application of the above-men.ioned assumptions one more equation,
different from the Chandrssekhar equation can be obtained. The
form of the equation derived by Ivanov and Mazin was definitized
in 2 work of V., I, Smirnov [5].

A check of the derivation of the Chandrasekhar equation,
expounded in work [9], shows that in compatations error in sign
is a’lowed, after correction of which instead of the Chandrasexhar
equatior. & pair of new equations is ontained. liowever, by modifying
ihe derivation one can also obtain the Crandrasekhar equation,
It is shown helow that rejection of the condition of stationarizty
makes it possible to prove thet this pair of new eguations has
no meaning.
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In this work the Chandrasckhar equation is generalized for the
case of nonstationary turbulence, solution of this equation for
the last stage of degeneration of turbulence is shown, and certain

solutions of the Chandrasekhar equation (for the case of stationary
turbulence) are obtained,

2, Eguation Describing Nonstationary Turbulence

Fejecting the condition of stationarity, adopted by Chandrasekhar
[S], we will preserve conditions of homogeneity, isotrouy, and
incompressibility of liquid, Derivation of the equation will be
a generalization of the Chandrasekhar derivation [9].
introduce the following corrvrelation tensors:

wet us

Q= %,(7, O)u)(7, )= w105 ,
Tya= (7, )8, (7, ) up (7, €)= viuj ug,

Pli"“:(;'o ")"1(;'. ")“(;’- £) = u; uj a",
@ o< pfs,

Q,,.,,,asa,(;’. t’)u,(;'. t’)u,(r-;, l")u,(;’. £7) == ) Galis (1)

-

Here # and # - radius vectors of two points in space; t' and t"
two moments of time; uy -~ component of velocity vector along the
i~th axis of the Cartesian coordinate system , in which Ti'i = 0;

p ~ pressure; p — density. Averaging is done by sets,

Because of isotropy and homogeneity, all correlation tensors
depend only on twr”—¢, and also on t' and t" (cn t=|—¢| in
the cass of stationarity).
following form [9]:

In perticular Qy and Ty, have the

Q=L T + 200,
Tun= 2 TR — (T 4 37) (A + 500 + 204y, -

where "‘l"""';k Q and T — determining scalars of tensors @, ard Ty,

P
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depending on r, t' and t"; & — Kronecker delta; primes near Q and
T signify differentiation with respect to r.

The basic statistical hypothesis will be formulated as
. QI/.N el Qle/l + Q“ij + Ql/ (ot 0» g’t ") QN (09 Go "o t'}l (3 )
which is a further generalization of the hypothesis adovted by
Chandrasekhar in work [9] and generalizing the Millionshchikov

hypothesis,

Let us consider the Navier-Stokes equation for the first point
@, '

*l 4 s .a“' ,
EA- S At )

We multiply (4) by #; and average for the set

00y a ,

Here hy Wi 1is understood 3%'127 . Turning in (5) to determining

scalars, we obtain the first equation for scalars
2 2
.a.'....yD‘ Q’(for’i'S)T' (6)

where Dn — laplacian in n-dimensioneal space in case of spherical
symmetry, equal to

= ()

ITn order o find the second eqguation for ccalars, we will
slari from the Navier-Stokes equation for the second point {7, )

d 9 P .
L ? 0 e e - “
PV +'a_x-:-u/u[ a‘; +W’ulo ( )
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Wwe multiply (8) by au and average. We then find

. }:%"'TM‘*'XM"’V’TwJ: (3)
: where we designatea
2 o
Keg= g Quat 3 - (10)

Turping in (9) to deteruining scalars, we obtain the second
equation for scalars

(3‘,‘?-«- WD) T o= — X, (11)

where X — determining scalar of tensor Xu,;-

As Chandrasekhar showed [9], from she hypothesis of form (3)
and condition of isotropy it follows that

2 ANXm—202 12)
+(5+ r4) X=—205-D0. (12)

Generalization (3) in the case of nonstationarity does not hinder
the obtaining of equation (12), where tne form of the last term of
tre right side of (3), not depending on ccordinetes, does not play
¢ rcle, inasmuch as in derivation of (12) we encounter only
derivative Qapg with respect to § see (10}.

It is easy to check for the ezistence of idenlity

Y

(5+'£)D::595(5+ r%-) (13)

- a -~ - -
Appiying operator (;‘-;-—vD;) to (&) and considering (13), we

™,
[
[
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(3 = Pe)(5a D) @= — (r 5 + B) . (14)
whence with the help of (12) we finally obtain

L) Dye=mgoe ()
We must emphasize that in this equation it is impossible to consider
t' = t", which follows from the derivation, see transition from (4)
to (5) and from (38) to (9). Owing to this it is impossible to

make the transition from (15) to the equation for Q(r, t, t),
derived by Pancher from the Xarman-Howard equation with the help

cf the quasi-normality hypothesis [11].

In the particular case of stationary turbulence scalars depend

only on r and ¢=|i"— ¢}, so that -&—'--u—wo—‘:—,—. Let us assume for

definitiveness that € >¢: then -2 =9 and 15) vecomes the
? * o

Chandrasekhar equation for Q(r, t):
L(E _g =—202 i
+ (5 —v03) Q= -2 2 DQ. (16)

Thus for Q we obtain a unique equation (not counting the equation
obtained by the other method, see below), when under the sssumption
of statiy # rity there can be obtained, besides equation (1), an

addilic pair of eauations

d
> vDA Q-=2Q—- DQ. (17)

if during derivation of the second eguation for scalars we stert

with the Navier-Stokes equatiocn for the first point (r', t').

Incidentally, it is exactly in this way that Chandrasekhar proceeds

but he allows error in sign (equality (23) in work [9]) and therefore

arrives :t equation (16). With nonstationarity it is iwposs’-le o
start bolhn times from the {first point, since we iLhen ou.airn, ir
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particular, different correlation tenscrs &4 and uﬂqdf with
different determining scalars, Thus 1t 1s impossible here to obtain
a nonstetionary equation wnich would become (17) in the case of
staticnarity. Consequently, the peir of equations (17) is excluded.
If, in contrast to (%), we start from the second point, we again

obtain equation (15) for the nonstationary case snd equation (16)
for the stationary.

As was shown by Ivanovskiy and Mezin [2], and also by Smirnov [5],
assumptions of howogeneity, isotropy, and stationarity permit obtaining
one more equation, different from equation (16). Agein rejecting the
condition of stationarity, We leave on the left in equations (4) and
(8) only the partial ferivative with respect to time, multiply left
and right sides and &v:rage:

o (18)

where t' # t", as in (15), and » — is a function whose expression
through Q has not yet been found. However, in the particular case
of strongly degenerasted turbulence, when in equations {4) and (5)

it is possible to reject nonlinear members, the form of & is eesy
to find

—io—a 22 \
a’&. 'DSQ' (19/

Ivanovskiy and Mazin consider [2] that nonlinear members can

L}

be rejecied and for stationary turbulence also, if we limii ourselves
to tne viscous subdomain, where Re&l. VWe then obtain [5]

(&40t Yemo o

which differs from (16) if we reject the noriinear rignt par-.
Apparantly, requirements of homogeneity and isotropy, togetner witrn
the hypothesis of quasi~normglity, are not so strong as to make it
possitle to derive & unique equation,

1f,

_ v Ty ™ FTFRST T T

[



It is pcssible to doudt the legality of rejeztion of nonlinear

memters during derivation of equation (20), inasnuch as stationary.
undamped turbulence exists as a result of nonlinear energy transfer
from bigger vortexes to smaller. Therefore it would be desirable to
obtain full nonlinear equation (18} and to study its solutions. Until
this 1s done there is no possibility of selecting some one of the

two equations (15) and (18) and steting that it, indeed, describes

the atructure of turbulent flow.

It is easily confirmed that equations (15) and (19) correctly
descrive the final period of degeneraticn of turbulence, If it is
considered that at initial moment of time

Q(r. 0, 0) = constexp (..!.j..), (21)
n
Then function
Qir, t’;i’)ucﬁagt{g + Wt '“ex - r ~m
- s PI” Brewm (22}

satisfies, which is checked directly, both equation (15) with

zero in the right part and equation (19). Solution of equation- (22
for t = t' = t" becomes solution Q(r, t, t), found by

L. G, Loytsyanskiy [3] for ¢—o9, when the form of initial condition
(21) does not play a role

Q(r, ¢, t) =const¢-52 exp(~— -g-‘-) . (72%)

and also solution of the Kérmin-Howard with initial cordition (21),
found by Batchelor and Townsend [8].

Below will be examined certain solutions of the Chandrasekhar (1£}.
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. Solution of the Chandrasekhar Fauation Depending
on Time Interval

et us exemine squation (16). It is convenient to introduce
dimensionless longitudinel correlation function £{r, t). By

qefinition

f——-;:-.

12kh)
Substituting (2%) in (16), we obtain an equation for f
o 7 & 2 —_—a
";— -OT‘"- ,D:'a)]“ll’/-‘-;—Dsf. (25)

Function f(r, t) should be an even function of r and i owing
to conditions of isotropy and stationarity (7). Let us assume that
f(r, t) can be represented in the form of a power series

e )3 ¥ auit! (26)

=8 R0

Putting this series in equation (16), we find

Y Vik(2% - Dapr?'2-2 — 22 ¥ Vi — 1) ~ 2) (4 + 8i + Nay X
oot Reei o3 Rt

Xef 2@ty B Y I~ 1)@ +Neua, 7 (o7)
Fd Bl 1ead Mnl

We divide this equation by r, make linear transformation of
indices of summation in such & way that summation starts eacn “inle
from the zero index, and equate coefficients of members with identicszl
pcwers of r and t, Then we obtain.

1 v s e
G = g maTnain 2 6T Y E+DX
i &
>:(i+1)(u’+32i+sa)am,,+3=2E(p+2)x
. M'-o . -
X (P + 1) @p+ Npy2, 01y, ...]. (7%)
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wnere i, £50.

Let us write out the macrix of coefficients a,:

a“ a" auaooa“.o.l
a“ a" Q;:.. .a;;.. ..

Gy Ay Gp...Gy... %" (29)

e ¢ o o & o o o . o

an a‘g an.g.(lu LI

According to (28), coefficients with value of second (temporal)
index >1 depend on a finite number of coefficients with lower value
of second index, i.e., each column of matrix (29), in addi:iion to
elements of the first line, is a function of elements of coulumns to
the left of the examined column, and also of elements of the first ¢
line. Consequently, if we assign all elements of {orm a, au. (i, £33 0),
then by formula (28) all coefficients @ are uniquely determined.
In other words, the Chandrasekhar equation (25) uniquely determines
the space-time correlation function f(r, t), if space f(r, O}
and time f£(0, t) correletion function are given.

If functions f(r, 0), £(0, t) are assigned graphically, they
can be approximated by power series, and we can thereby determine
some quantity of first coefficients @u.0y . If X's of Tirst
coefficients . are given; 2K coefficients a, are necessary in
order to determine alil g, to the 1left of straight line

in (29).

In the particular case of k = O {second column of (2Q)) we
find from (28):

*
-

i .y . o enras ., o
3:..:.1"%——6[2"(! +BE+D + 342 +32+83) X

- : . B 20
Kaae kB WP+ D (P DCP+ Dapgtipe]. PO
€
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i.e,, all elements of form a,, with the exception of 2;, are determined
only by elements of form a4, Where 1 = O:we have the simple formula

8y = 14 (w'ay, + 54v%ay), (31)
experimentel check of which would be interesting.

~ With sufficiently rapid decrease of derivatives f(r, t)
with distance for unique determination of f(r, t) one longitudinal
space correlation function f(r, 0) is sufficient,

If the following condition is met
» ~ o
(-‘-;' - "Dg)f.("- dr-- -0, (32)

which seems natural, one can determine all coefficients of expansion
of 7(0. (). g 1.e., the function £(0, t). Integrating (25) with
respect to r, we find

(L =v0) = [C() - fim 05D 0] (33)

where
C= (1035 D, 0dr = F) G (34)
5 . =
If we substitute ia (33) (r, t) inlform (26), then,

besides (28), we obtain

= M-—F&

These formulas together with (28) make it possible to success-
ively determine all O £50. Actually ay equals

o Ben =y (36)
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For Ck it is easy to obtain the formula

B o » e B
Cy=43 ; EXE+DE+DEG+Day,s 0,0 " dr. 8
. Iy (38)

As wes shown above, from the first column of the matrix of
coefficients (29) we can determine the second, Further, with the
help of (28) from eiements of the second column we determine z1l
elements of the third but Geg.. The @g elements we find from (35),
inasmuch as element a4, has been found, while C; can be found from
(38), since in the right pert of {38) are only elements of Form &,,
r = 0.1, which have elready been determined. Analogously we find
zlements of the fourth column from elements of the third, etc.

Let us consider formula (36). If f{r, O) and &, (36) determines
the Eulerian temporal microscale of turbulence ¢, equal to

SV g (39)

Since as, obviously, we must have a, <90, from (36) we obtain the
lower limit of energy of stationary turbulent flows

P>mc':"' . (4e)

izperimental check of formulas (36)-and (%0) is, from our point of

view, of great interest.

Iet us consider the example when f{r, O) has the form

-.'—:-;- (41)
,(’0 0)-¢ ‘.

We easily find that
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Thé?/;rém (36) and (39) we obtain i

S (S — ()

~

i As appraisals foundéd on experimental data for turbulence with
7" large values of Re show, usually [6]

R S
7
¥

" MIul l o 7 .

B Yy el (43)

1 where £ 1s ‘rate of dissipation of energy of flow. Here we use the

3 well-known expression for l [7]

g !
- 7 2 (44) |
2 ¢ e |
f;f Then from (42) we obtain i
. ‘ *
g | B 10 é

Let us note that in examined example formula (40) is satisfied

-
CELSER R AN v it
S A i § IS e Ly
T3 S o

ther: is reason to think that (42) and (45} correctly zive the order
of magnitude of Tg. In the theory of turbulent coagulatior. of
aerosols is obtained the formula {6}

ey 4p AR
s

L according to (43). 2
L !
é ; It is known that correlation function £(r, 0) is poorly described ;
i i by & formula of form (41), S0 that relationships (42) and (45) have )
:g g to be very approximate. On the other hand, from the expression for f
4 y Co (37) it follows that Co is determined basically by small distances, f
§ whére 7(r, 0) and its derivatives are not very small. Therefore,

st st
m——

g3, (46)

Possibly, the uge for f(r, O0) of a more exact expression than
(41} would allow us to achieve better agreement of both formulas,

'
e T T STV

i or even make it possible to definitize (4€).
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When € = 10 cm?/s3 and v = 0,14 cm?/s, we find from (45)
Tq = 0,37 s, which is realistic. ‘

.\:(

We showed that during fulfiliment of condition (32) the ,
Chandrasekhar equation (25) for space-time correlation function
f(r, t) has unique solution in the class of functions expandéble in
pover series ln even degrees of r and t, completely determined. by
assignment of space correlation function f(r, 0). Solution of
#{r, t) can be found by the formulas derived above., The form of
f(r, 0) should he determined independently either from theory or
from experiment. Furtharmore, the mean square of the velocity
component ' and kinematic viscosity ¥ have to be known.

A

Thus the Chandrasekhar equation is compatible with the well-known
Kolmogorov theory, or in general with any theory giving f(r, 0), if,
of course, it does not contain propositions contradicting conditions
of homogeneity,'isotrop, and stationarity, or the hypothesis on
quasi-normality of veloecity distribution.

Certain theoretical resuits show that the hypothesis of quasi- i
normality cannot be fulfilled exactly (see, for example, work [4]). ‘
However, it would hardly be correct to interpret such results as
- proof of the total unfoundedpess of any derivation obtained through
A the use of this hypothesis., It is known that the system of equations
{ i for correlation functions is infinite. so that in any conceivable
! theory of turbulence it will be necessary to adopt some or other
hypotheses in order to be limited to a finite number of equations,
',u i and it is fully possible that any of these hypotheses will iead to
: ' more oy less considerable contradictions and noncorrespondences:

4. Universal Solutions of the Chandrasekhar Equation

It us examine a special family of solutions of the Chandraseknar
equation for which we will turn in equation (25) to dimensionless

variables
r [ 4 .
Y AR (47
= )

1 .
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where the coefficient 2 is introduced for considerations of
convenience, mentioned below, see formulas (102) and (103). Then
we have, assuming that f depends on p and T,

A& -0i)r=2r o0 (48)

This equation does not include quantities v and &%, characteriz-
ing ligquid and turbulence, Therefore under corresponding boundary
conditions it gives universal solutions. Instead of (28) we obtain

” - 2 [4 H
S = ge DGEDEGTD [J +-3) (f +2(i+1)X

i R . 1 &
X4+ 32 + 63,50 + T B2+ 2P+ 1)(20 + NN pys, ¢ O1pa-g)» (49)
gt '

where &, - coefficients in expression

10, 9en E Vegg¥e*, (50)

0 Aot

If a condition analogous to (32) is met, relationships of type
(35) -and (36) apply, where the latter has the form

\

ag; == 1408,y — C,. (51)

However, universal solutions contradict the Kolmogorov theory
ectually from comparison of (50) and (44) we essily find

Soq/Coou (52
i

where 1z, is a dimensionless quantity, while from the Kolmogorov
theory it follows that

& ~ (L), (53)

wiiere L - magnitude of large-scale vortexes. Appsrantly, whiverzsal
solutions are of lititle interest from a physical standpoini,

2l
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5. Solutions not Depending on Time Interwval

Equation (25) also has solution net depending on time intervael,

the study of which is of certain, basicalily met. odical, interest.
Let us record stationary equation (25) in the form

o @ - a
RGO LD
Representing £{(r) in the form of a series

JO = o, gy,
jl

vie £ind

¢
- _30-*2)(?4")(21'4-7)‘"3‘,,.,
M AFDU+DC+ DGR +3U+63)

Bjy3 ™=~

where 1 > 0. If a, and a, are assigned, forrula (56) permits finding

all other g, £>3.

(54)

(55)

(56)

If conditions (32) is met, with the help of Tormula (35), where

we consider @ .., =0, we can determine as,

»
a’a.-_a_).'

2800

so that only aq is arbltrary.

(57)

Equation (44) also has a particular seclution of special kind.
In order to find it we will start with equation (25), containing time.

assume that (32) is satisfied. We then cbtaln:

(& w0t )/~ —-Eijf(r'. 0L Dofir, 7.

We will represent solution of equation (58) in the form

25

Let us integrate poth parts of equation (25) from r to « und

w e vowrre e

(58)
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Jr, &) == folr, ) + &g (r, ), (59)

where fo satisfies equaticn

L _apif, -9
- Jo—9, (60)
with boundary condition
{r, 0) = f(r, 0), )
S (61)
and g satisfies eauation
ﬁ-—s’.{)ﬁg—-—f[(! 0 -2 Df(r, D ar',
Fr ] ’_~' i {62)
with boundary ccndition
&(r, 0)=0. (63)

Let us find the solution for (60), using apparatus of the §-
function theory, described in work [1], similarly to the way in whieh
this 1s done in work {2]. Let us represent f!) in the form

folr, &) =j(r, 0) + o(r. t), (64)

where ¢ satisfies equation

2 Dy =0, O) (65
with boundary condition
v (7 9)=0. . (66)
The solution of (£5) is presented in the form
8 - - . 4 grr
o(r, t)--‘jf vDRI{PYO(l —rl, (¢ - tDdu'dl’. (€7
26
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- 8 Here G — Green's function, dv' — element of volume in five-dlmensional i
: - R . b
3 space '
. 3 .
: do’ = " st Lsin* ¥ sin 0dr dX u¥ di dy, (68)
} where r' — "distance to origin of coordinates," and X, ¥, € »nd ¢ — %
"§ "angles" formed by radius vector with coordinate axes [11. Irntegpation §

is carried out over the entire infinite "space."

& Green's function sati. fies equatien [1].

27

m - - .
*;--*’lﬁazwa(lr'-r], it'-~£), (69)

_ using which, we easily obtain form (67)

.A.' Py ] ; » 920

] ?(f.ﬁ*"‘a—,';u'f(r'. 0) Gdu’dt’ — £ (r, O, (703
Lo then from (64) we have
© . ol .
o JAS o---;,-‘s‘[f(r'c 0) GL|r —F), | —4]) do/de’ =
‘.. ‘:’ N owy 3 lef o8 o -
- d #0977, e, (1)
LS The singular part of Greewt’s function is equal to
O
| ] R I I
: £y by e — o Lk { XL a9 { 200 { o
S o S e
1N X otalir el pa goay 4in? W sin ©
I —~ oty ’ (72)
i
3 {g' Let us assume that Green's function G is different from 0 only
. when t > G. Therefore we will assume
R
L GG §=Gy(r, )+ -1 [2G,(, 1 t>0 .
S )=Gi(n il 0,(;-.:)‘ o' £<0° (13)

- e
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As a result we find for t > 0

A T T

- A e L,

: G(r. 0 Tl Ta- L - (7h)
IS (2,):,3‘2 ® .

Cenditicn (73) together with the condition of parity of fO and
Z with respect to t mean that the sought solution of f(r, t) does not

have to depend on t. Below we will confirm that this is indeed the
case,

[RZ ISR R

Let us represent f(r, G) in the form

- §
i JEO=14ar Loyt D™ gy, (75) |
) e

: The series lontzins Only even degrees of r owing to isotropy [7] and §
g is assumed uniformly convergent everywhere, 5

3 2 : We rewrite (71) in the form : §
M 12 1.7 §
. Jlr, 0= —— e 2 :ff(r'. 0K, ar, (76) ;
; & é x2S ‘2 ) : 2
3 E L where K is found after integration with respect to angles :
¢ 5. 3 b
b * .g t
;. a % 2r: rir "7' ‘

. x(f.r)--[-( d— | T a)+

4.‘ { 3 L °
'0' £ $ ":'_” T e 1

- A +_( e & ) _w[__ et L N o I

oi : = J +—5 d!-fir‘ ﬂ(e € )
g : . . '
e .. .‘ b [ 4 | 1
" ”7(‘*""" ,-w—»,,b_.;ﬂ__zg_(, Nresy g-ﬂ!‘-#f)]’
XY (77}
E 2 % where
. i
k- B (78)
e s - o E :
b o 4 :
- - integracing i (76), we find i
3 28 ‘
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flr = §_ %p';" {2+ gau[(;‘; - -5;-;.-) Uniy—

Wyis

2 t Uns __
~(gs+ 5 ) Y+t = E T (79)

2
where €, — integration constant, proportional to p"?, and U,(r. §)
functicns. equai to
- .
U, = 5, Ve o L (— 1) e ™" dr, (80)

Integration gives

uh"’z;;‘g—'}i} c‘gl'ry n — 1 - 201
o

2'+l—l ’l-l-l-‘

LAY y
Uppor=— 22757 Y a0 Lo it

2§+t-l ’p.ﬂ-l ¢ ( 81 )

1m0

Substituting (81) in (79), we find an expression for fy in the form
of a series, the structural rule for which can be seen if we write
out several of the first members:

folr ) =1 +a,,(%+ )+ au{ 57

L
; \2.2},-!-22’4-?)'*‘
o789 7:G¢t ort
:+a'(2o2-2)' +32~2} +3-2—3-+f')+
SeTeRe11 7:Q.11s2 9.1t 13 {ad
+a 4 Y
..( 2aaag T4 Taas tOGam tA e+ ) (823

The coeffizient before the term with ordinal number i in parentheses,
atead of which stands ccefficient aw, is equal Yo the binomial
coefficient Ci.

Let us return to expression (59) for solution of the
Chendrasekhar equation (25). We will look for g(r, t) from (52) by
the method of successive approximnztions, substituting instead of
f(r’, t) a series with unknown coeffici.uts

Jlr, ym ¥ T 0,2 N g ™ + 2(8, 1Y), s3)
20 i~ & 4=

where @(e2, ) — is an even function of t and r. Zarity of function
i(r, t) with respect %0 t follows from scationarisy [7].
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Let us examine a certain approximation, for which

J{2 t)-ggcm’t”z Cao ™ Gre (84)

If coefficlents ¢y are known, then g(r, t) can be recorded in the
form

£(r, )= j j [ j' S O 2D, P dr’] X
. 7

X (|7 -7}, |t —¢]) dv'dr’, (85)

i
H
i
i

where G — Green's function (74). Let us replace variables

T T

Gt — .- .
E é V-"“ﬂ jﬂ" ')-D.I(r" O)a']aur'-q. ") do’dv, (86)
l'i % Assuming that series (84) can be differentiated and integrated
e .5 H term-by-term, we find:
.
; 3. i ”» 9 ”
. S | 77, ©) D4 f(r, ) dr=C(8) ~ j’ £, 0 %D.f(r, 8)dr —
‘__ 3 .r‘ o
Y G v e -
: e — M T \Y 2k(2% 1 3)(2k—2) We2m—20 L
: 5 ¢t 3 L WL om g e o 87)
M g 'S 1 0 m =0 aesid (87
e where
-
o co~| (/. 02001 (. 9ar= Ve,

where coefficients €, are still unknown.

O Y

Let us find auxiliary function W(r, 8)

Wi(r, 0)= j[ [re. 62 D9 dr]:«r'. v rdre,
s

—~
U
V]

N~

30
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Knowing W(r, 6), we can find g(r, t) by the formula

(i !
: 8 =~ —[—-we na. (90)
4x3v? 0 ¢7 ;
g Substituting f{r, t) here from (84), we find
i 23 Lot
E wir, e)—-—-{(—2l/a [( ‘o’+i;-s’m=)q(o)+ *

TR

#2700 ]+ § 5§ Peum).

Here

2R(2k 4 3){(2k — 2
Pymy = (2&*‘;:'_2 )c,,,c,.,t""’”x

2Uzt+:m+3 1 1
X [f’(ﬁk + 2m 43} ( 2k 4 2m + —p;z-) Usasa "E}‘auﬂﬂnﬂ -

. "é "-*)Umu-x] (92)

————

where function Uk(r, B8) is determined by (80), and

D(O)a—-llm[ cor g iﬁ X

reote
t-»! {ad meld) 8

CaiCmn ’214-20 ‘u'{»?ﬂ

o §

L

3 C 2R(2% 4 3% — 2)
(2% 4 2m— 2) (2k - 2m)

I..-.-J

(93)

It is easy ¢to verify that the last expression equals

D(@-—'—-Mﬂr’. L DS (v, Odr Y rdr -f} D3*. (94)
o =9

"

| It is possible to record Py, 1in the form
N Ptme ™ o™ e {95)

where

- o u..‘.'.-..'.a‘....q.o-;-«-, Praney Sty vanas e
.0

e S ot e A T A A n . vt e + N -————— - ————— - e
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Q= 2 (24 + 3) (2 — 2) [ﬂ Wy same3 + ( 2

+-L)U Lo
W4 2m—2 G+m+y)  \2k+2m o)

A

A TN i LI

Baastatindon :V_
P oo A S R A AT TS T TV TR AT

Iy . "
TR FAshliris i b O 4 2.0

BTZIVETER S T LAt

e e awas .
B R

& h

1 1 ]
""i;;utnuﬂ"’i;(""'u‘ Uz&n--l]- (96)

We will first determine members of the sum from (87), enclosing
members with the same highest degree of € in parentheses

BE T T Pres = (Prn) + Prow+ Pr) +

B3 10 M0 220
+ (Puso + Pare + Poose + Pryoa + Pyey) +
+ (Posw + Puass + Poany + Pruse + Py + Poy) + ... =
e (225 Qae) + (220 Qr0 + 3202:4Qs) +
+ (30 Qe + B3813Q1 + 65,Q2y + @28 Qy + 32020,8°Q5) +
+ (@0 Qn + 231 Qu + aaauQu + amaxQu + @58 Qe + 3320# Q) +

+ oo m= (a0 Que] + [ 8+ ::;.2 o) Qa]'i'

&
3:9.2 7.
o+ 53 5 S0+ 200 ) Qu + (0 + 020) V0 | +
L
4.11.3 3-9-2 2.7-1
. +[(a. + 49980t G + o ‘%)Q“

+(au+aaa.;)°’0a]+.... (97)

where

wSVE 57 s
Qs I = +22l+')

sV" S TR L
Qu— (2.2.25, dgas FIT "),

V7 57.9.11 7-G.11. /8 9-11.r¢ 1 \
Qe 3. \2:2:2.2:§¢ +4 22.2.p +6 72.p +4 % +">' (98)

37
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Let us note that expressions in parentheses in (98) and (82)
accurately coincide, as it should be according to (79) and (965.
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We substitute (97) in (51), then substitute the obtained
expression for W(r, 9) in (90). After integration and substitution of
g(r, t) and f,(r, t) from (81) in (63)

e em mmmm S5 ne r— —— e e

(e Q)ms f(r, 0) + 2t (1-5ty9 -+ 270597 + 3-9-007* +
+ 41180 + 5°13a, " +..) +
T+ 4 (1:5:7 0y + 3:7+00,7" + 6:9- 112" + 10-11-13a57* + ...) +

.5.;5[: . -..r.l.égera_*_aa‘_*_h'c_’_h'._’_hru*_ )+

From the condition of stationarity of turbulence it follows that
.odd degrees of t have to drop from f(r, t), see (83), where this
requirement satisfies each of the approximations (see (84)). Equating
coefficients of members containing t to zero, we find

P~
G=—ie =T
-o.-iL—' -—-Q—
=327+ 7" "0’
W e -*’
G 2.3.9¢ °
—h g 42T ‘
Sn= = aiie * Gt 5508, {100)
: %, 3.9.2 2.7-1
S =g * % =Gyt e R
L '
o= T mmr e ’.-""2'-/"“'-»"
Pﬂ?+3NP—4)

»™ R+ Y(n—iy

It is easy to verify that the formulas of (100), starting from
cexpression for a30, are equivalent to (55), and that the formula for
a5 coincides with (575.

If expressions for apq are substituted in (99), it willi appear
that all coefficients on members containing t2, turn into zero, and

- e e . — . - - -
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thus, expanslion of £(r, £) in series 1in degrees of t has the form

J(r, &)= 1(r, )+ O(). (101)

Examining .100), one readily sees that all coefficients I
are proportional to

£4L Y

i
® y (102)
Nigiationships of (100) constitute

recursion formulas where the
last <oefficient is cbtained as the sum

preceding products, plotted

in acccrdance with dirined rule. It is zasy tc see that the factor

m entars in expression for By g in degree k. Consequently, series (75)

can te rewritten in simpler form by introducing instead of r the
dimensionless cosrdinate

==

Lo
[y

(183)

what corresponds to (36). Then instead of (65) we have

f(..o)-c:+¢.p*+«,p'+-~~§.-.p". (104)
g-l. .

where coefficients ak are Jdetermined from recursion formuias:

-t g e
G e =
2.7-1,
392 7% (10%)

®e o0 0 o o

‘.--Z%I-' fyomey

4

LA
- =! [
e a b MOt A

2w 223 (p—1)
? s+ P@~1)

34




w o oAmmaan e - .‘w.,.«........»-.—(..._\«»‘]

Exprzsssions fer 60 and 0y can be found by switcning from r to
p in formulas (88) and (9u4):

—

byom -jm.'f ()] i—,—DJ " dp’}m- (106)
L .
«--If(p)[;,‘-a.f(p)}del (107)

Introcucing dimensionless time T according %o (47), we can
record (58) in dimensionless variables:

‘ > T rint o 20 f1ar < dot
» (m—o2)r= 693 DS, (108)
' from (106), with the help of (108), we find a simpler expression
4 than (106)
,‘ o3 ‘-
‘L by -——,-.j W37 () d, (109)

where the follcwing relationship was used

#ir )y _ ]
o L. o Lo o (110)

following from (101).

¥ith the help of (110) it is easy to show that f(p, ), in
general, does no% depend on ©. Actually, bty differentiating (103)
twice with respect to 1, we find

g Mt il (113)
il.e.,
o, =715, 0). (112)

Relationships (105), (107), and (109} make it possible to find

all coefficients s inasmuch as ¢ and n, compietely Getermining ak,

b e ey Soumis e 4 e e
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are themselves determined dy all Qe The value of L should decrease
rapidly with increase of k, so that it is sufficient to xnow a
certain quantity of first o for a glven degree of accuracy in
determination of @, and £(p, 0).

Coefficients a, were calculated on the "Minsk-1" computer. In
integrals (106) and (109) instead of = a certailn g, was selected
which then was increased gradually.

We selected c<0) and n(o) arvitrarily and then in first
approximation obtained (M), sV (;,), etc., until in a certain n-th

approximation changes of ¢ and n become negligibly small (with accuracy

to the fourth significant digit). When Py = 3.5 and i process
converged, and when p > 4.5 the convergence interval decreased so
much that for 7 and n found from extrapolation of curves cgg)and L

kJ

(see Fig. 1) divergence of the iterative process was observed sc that
it was necessary to select such a c(o) and n(o) pair for which
divergence was the slowest. Figure 1 shows how stabilization of

r and n occurred with growth of e

The most pirobable value of § and n are { = 0.358%5 and
n = -0.04154, with accuracy to 2-3 unlts of the fourth diglit. With
growth of N the number of N of coefficients n . necessary

for finding z and n with an accuracy to one unlt of the

36
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fourth diglt increases sharply. With Py = 5.65 are N = 700 was
iequired., Further increase of O turned out.to be @mpossible in
connection with the limited capacity of the fast store of the
machine (2048 numbers) and increase of computation time, For
obtaining ¢ and n from values of the preced;ng approximation two
hours of continuous wachine operation were required,

From the found final values of ¢ = (.3585 ang@ n = -0.04154
a graph of f(p, 0) was plotted, see Iig. 2. From the graph it is
clear that f(p, V) intersects the axis of abscissas when p & 6.
Values of f(p, 0) for ¢t = 0.3585 and n = ~0.04157 differ from the
above-mentioned by less than on 0.001 with p < 6, which permits
judging the accuracy of plotting of the graph. In Fig. 2 i:
also given a graph of function exp(-alpz) for a, = 0.07176. 1It is
clear that up te p = 5 both curves almost colacide, so that decrease

of f(p, 0} turns out to be very rapié. The found solution is checked
by direct substitution of £{p, C) in the form of a series in equation

(108), for p = 1.

The obtained solution for £(p, 0) is interesting basically from

methodical stand point. Most interesting 1s the quite rapid
convergence of the series representing the solution, which permits

relying on analogous convergence of series giving both time-independent

anG time-~dependent soluvtions. Green's functicn {fur the linear part

Al A A IR ¢ s N T
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of the Chandrasekhar equation (25), used during the finding of f(p, 0)
can be useful durlng more detailed investigation of this equation.

6. Conclusions

The conducted investigation lead to the following results.

~) A dynamic equation was derived for determining of the
scalar of correlation tensors describing two-point space~time
correlation of velocities of turbulent flow and being a generalization
of the Chandrasekhar equation for stationary turbulence. During
derivation we adopted conditions of homogenelty and isotropy, and
also the generallzed hypothesis on quasi~normality of veiocity
distribution. '

2) During direct derivation of the statlonary equation a palr
of equations not noticed by Chandrasekhar is obtained. However, these
equations one should be rejected, inasmuch as it 1s impossible to
obtain them from the more general nonstationary equation.

3) In principle it 1s possible to obtain one more equation for
nonstationary turbulence, which has not yet been investigated.

4) The generallzed Chandrasekhar equation correctly describes
the last stage of degeneration of turbulence.

5% ‘Phe Chandrasekhar equatlon (stationary) for the space-time
iongiv ... aal correlavion function can be solved by way of the
rey o Lo:ntation of soiutlon in the form of a power serles. Thne solution
73 u.ique 1f one assigns purely spatlal ana temporarl correlation
runctions, which can be determined by anothe» “heory by experiment.

6) If a certaln kaown combinatlon of .urtisl verlvatlves ol
i worrelation jusction turns to zero at inliaity, for urlgue
cosution of the Chandraseknar equation 1t Is suflliclent Lo assigrn i

dewe - tORroLaLion Curectlon., Here the Eulcor o7 Ule teapirul rlionoor
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of turbulence turns out to be a funetion of the mean sguare of
velcclty, kinematic v. .cosity, and the integral of known form from the
space correiation function. i

7) The Chandrasekhar equation has a class of solutions, the
form of vhichi is universal, i.e., does not depend on the properties of
Zquid and intensity of turbulence. These solutions do not agree
with the formula for the mean square of velocity of turbulent filow,

knownt from the Kolmogorov theory.

8) We investigated solutions of the stationary equation
not depending on time interval, and in particular, one singular

~solution, determinaed with the help of Green's func.ion.

In conclusion we must pcint out that results of this work
can be used during dsrivation and soluticn of equetions ror other
space~time correlation functicns in turbdbulent flow,

The authors thank A. I. Ivanovskiy for useful criticism and
Yu., V. Sidorov for discussion of a number of guestions of mathematical

character.
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TURBULENCE SPECTRUM OF A STABLY N

STRATIFIED ATMOSPHERE
G. .. Shur

Results of experlimental investigations ot
the turbulence spectirum in the stratosphere and
upper tropesphere, where tcmperature stratfi-
cation is stable, are examined a diagram of
the generalized turbulence spectrun, including
the buoyancy subdomain is offered. Particular
cases of spectra with limited dand of wave numbevs,
including the spectrum of "quasi-wave® distur-
bances are examined. For a physical interpre-
tation of energy transitions in the spectrum
curves sg=s(@ are used.

I. Introduction

Turbulence in the free atmosphere is the phenomenon deternining
in many respects the physics of processes sccuring in it. Furinermore,
study of atmospheric turbulence is necessary for solution of a whole
series of purely applied problems of dynamiecs of fiight and alrcraf?,

of propagation and scattering of purities in the atmosphere, etc.

Free atmcznrere is usually stratified stably in density, wnich
noticeably affects the character of aznearance and development of
turbulence in it. The question of appearance of turbulence in &
thermally stratified medium was solved theoretically by Richardson,
who gave the criterion of growth and decrcase of turbulent energy:
turbulence increases when Ri < 1 1t is not changed when Ry = 1, and it

fades when R, > 1, where

'
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Here from equation (1) it is clear that Richardson considered
toth t:ermal and dynamlc stratification. However, for steady
turbuience, Ri’ i.e., the Richardson number, does not permit estimating
the intensity of turbulence and, this is especially important, gives
ne information about scales or turbulent motion.

Since turoulence is characterized by field of random velociting,
for descriviion of the {ield of turbulence statistical characteristics
are used, Ore c¢f such characteris icz, allowing us to obtain
information cn the intensity of t. »Julent motion of different scales,
is the spectral density of energy distribution of turbulent motior,
or the energy spectrum of turbulence

1

3(9)""i2’ . (2)

al&

where gm?‘ 2 — scale of motion, %, — vorticity of corresponding scale.

For locélxy-isotropic unircrm “urbulence Kolmogorov and
Obukhov, proceeding from considerations of self-similarity and assuming
that energy ls transmitted from larger scales to smaller without
losses, obtained an expression, which is spectral form is known as
the "-5/3" law

2 5

-—

S(Q)coe’e 7 (3)

.

[

where € it the rate of energy transfer over the spectra, numberically
equal ¢ the rate or dissipation of turbulent energy as heat. As can
be seen from expression (3), € also characterizes the intensity of

turbulence.
We will assume that in turbulent atmospnere, even if we piace
no limitations on spatizl structure and distribution ¢of turbulent

formation {(i.e., also in the case of anisotropic and nonuniform
tus-bulerice), energy transfer from larger scales to smaller taxes
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place. In the language of spectral concepts this means that energy
lux in the spectrum is directed toward greater wave numbers. Hence
follows directly determination of the rate of energy transfer in a
spectrum s, as a function of wave aumber 2. In particlar case (3)
t,=¢=const. Here, as already indicated, in a certain interval of
wave numbers energy does not enter and is not expended, but is only
transferred from some movements tc others. 1In Fig. 1la in coordinates
S(®) and 2 are depicted € = const lines, where €y < T, < E3. If the
spectrum of turbulence is in parallel with these lines, it means that
the " "-5/3" law (segment BC) is valid. 1If, however, the spectral
curve with increase of wave number passes from one € to another
(segment AB), it means that in a certain interval of wave numbers
energy enters spectrum and, conversely, in the interval corresponding
to segment CD kinetic energy of turbulent pulsations does not pass
completely into energy of pulsations of smaller scales. In other
words, in region AlBl the source acts, but in region ClD1 the consumer

of energy of turbulent pulsations is sctive.

4s
4

- o . - -
- o o

e e

R G I

Fig. 1. Spectral density of the
energy of turbulent pulsations and
the rate of energy transfer cver
the spectrunm.

A very convenient form of representation of experimental data in
those cases when we want to trace iransfer of energy in the turbulence
spectrum is a graph of functlone,=;{2), presernted in Fig. 1b. On
such a graph it is possible to separate distinetly both regions of
entry of energy into spectrum and regions where enegry is "sucked"
from the spectrum. '
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IT. Turbulence Developed in Stably

Stratified Atmosphere

Stable stratification of medium prevents the appearance in 1%
cf oscillations whatever. 1If, however, in suck medium chaotic
turbulent movements nevertheless appear, tnen, according to the
Richardson number, this means that the dynamic factor (in the opinion
of Richardson this factor is the vertical velocity gradient)
predeminates over thermal stability. However, the influence of
Archimedian forces is not limited by the fact that they prevent the
the appearance of turbulence. In well-developed turbulent flow
Archimedian forces influence the character of the turbulence spectrum.
The range of wave numbers (scales) in which this influence is
significant 1s called the subdomain of buoyancy. Vortices in in 3
region during their 1lifetime must accomplish work against the
Archimedian forces, on which they expend part of their kinetic energy,
i.e., fcrces of negative buoyancy are the consumer of turbulent
energy here. As was indicated above, s, drops with increase of ¢,
and the spectral curve has slope greater than 5/3.

First experimental data confirming the presence in the
turbulence spectrum of an interval of wave numbers in wnich the forces
oT ‘buoyancy appear were obtained in 1959-1960 [3], [4].

Analyzing results of radic experiments, Bolgiano [4] offered
a certain theoretical model of the spectrum of turbulence in the
buoyancy interval. Assuming that in a defined range of wave numbers
significant influence on the Zocrm of the spectrum is rendered by the
rate of dissipation of mean square fluctuaticns of specific forces of
buoyancy; Bolgiano drew a conclusion to the effect that in the
interval of buoyancy the slope of the spectrazl curve remains corstant
but different rom 5/3. He obtained expressions for spectrz of
pulsations of velocity and temperature

n

S,(Q)c\:ﬁ--i. (4)
3
S (g {5
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where §,(Q) —~ energy spectrum of veloclities of turbulent pulsations,
§,{(®) — energy spectrum of pulsations of temperature. During the
analyslis of results of experimental investigations of the spectrum of
the vertical component of turbulent pulsations of velocity, which were
conducted at TsAO in 1959-1960. 1t was found that in the interval of
wave numbers corresponding to scales of from hundreds of meters to two
or three kilometers the experimental curve has slope ccnsiderably
greater than 5/3 (see article [3]).

Investigations were made with help of a flying laboratory in
the upper trorosphere basically in clear sky. Zones of intense
turbulence in jet streams were inspected. Thermal stratification of
the atmosphere at these heights was stable.

In work [3] an expression was offered for the turbulence
spectrum, agreeing well with experimental data

4

-5 -&
3

a+o ), (6)

2

S (v, e

where §,(2 — energy spectrum of vertical puisations velocity, €g
rate of dissipation of turbulent energy as heat, b — coefficient,
depending on gradient of potential temperature, i.e., on the degree
of thermal stability of the atmosphere.

Expression {6) was obtained from the assumption that the rate of
conveérsion of energy in the subdomain of buoyancy depends on the wave
numter and is determined by the average gradient of buoyancy forces.
As was shown in the cited work, expression (6) is not strict. The
problem of the turbulence spectrum was more strictly theoretically
solved by Lumley [6]. He started from the same considerations on
dependece of the rate cof transfer of energy in the spectrum on the
gradient of buoyancy forces, as in articie {[3], and obtained the
expression:
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where @, iz wave rumber, characterizing the subdomain of buoyancy.
Expressicn (7) coincides completely with expression (6). Thus it is
possible to consider experimentally and theoretically established the
presen:e in the spectrum of developed turbulence during stable
stratification of the atmosphere of a subdomain of buoyancy, which is
characterized by the slope of the spectral curve greater than 5/3.

The distinction between expression (4) on the one hand and (6)
and (7) on the other is reduced, as a rule, tc distinction in the value
of the exponent on @ in the subdomain of buoyancy, so that in the first
case the slope of the spectral curve is constant, while in the second
it is a functicn of wave number.

In recent years in TsAO much experimental data, obtained undc:
cenditions when it was possible to expect the presence of the subdomain
of buoyancy in the turbulence spectrum, has been accumulated. 1In
Tig. 2 are presented curve of €q> obtained in 1665 during fiights
the flying laboratory in clear sky. Curves 1 and 2 were obtained
for the horizontal component. Horizontal fluctuations flow velocity
were measured in the region of large scales by a Doppler system [2]
and in the region of small scales by an aircraft hot-wire anemometer

[1].

C.cm2/53
I

2%

Fig. 2. Experimental curves
=€) 1 and 2 — Tor horizontal
and 3 — for vertical components.
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Curve 3 was obtalned for the vertical component according to
measurements ol vertical overload of the center of gravity of the
aircraft, with account being taken of its transfer function. The
curve 1i§= considerably higher than 1 and 2, since it corresponds to
the presence of intense bumping of the aircraft, i.e., to considerably
higher energy of turbulent motion,

The curves in Fig. 2 were obtained during stable temperature
stratification, and oun them is seen distinctly a region of decrease
of €g (subdomain of buoyancy). It is interesting to note that for
greater intensities of turbulence this region shifts in the direction

of greater wave numbers.

Experimental investigations of atmospheric turbulenc: widly
developed during recent years made 1t possible to accumulate a large
quantity of data on the structure of the fleld of turbulence. It is
obvious that every method permits obtaining the spectrum of turbulence
in only a defined interval of scales, but at present our conceg. of
the spectrum of turbulence of free atmosphere from scales equal to
tens of kilometers to submolecular scales, where kinetic energy of

e

turbulent pulszations passes to kinetic energy cof moclecules, 1.e., to

heat, has beconme complicated. 1In Fig. 3 1s represented stchemztica=ly

the energy spectrum of turtulence of stably stratifled ztmosphere.

G(R).ta
|

|

| .

i 1\ o> Fig. 3. GCenerallized
, ! , g ) o curves of s@ and €.,

P ] for stably stratified

! : X s atmosphere.
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Region I is the reglon of scales in wnhich primary f‘urbulent
formatlions appear. Average motion in these scales loses its stability,
and part of the energy of basic flow goes to formation of disordered
fluct .ations. Reglon I 1s characterized by growth of €q: This does
not mean that only this region receives turbulent ensrgy. The
increase of €9 makes 1t possible to conclude only that entry of
energy into the spectrum is faster than the draining off (consumption)
of this energy. We will not stop here on consideration of possible
mechanisms of generation of turbulent energy in region I. This
question is very complex and is stlll far from being fully studied.

Region 11 is characterized by quasi-equilibrium between entry
of energy into the spectrum and loss of this energy. As can be scen
from the figure, the rate of energy transfer over the spectum €q

in this region remains almost constant.

The following region III - subdomain of buoyancy — is
characterized by the fact that at wave numbers @,--2; acts a2 powarful
consumer of turbulent energy while entry of energy into the spectrum'
from without on these scales is practically iacking. Owing to
loss of energy on work against forces of buoyancy, the rate of energy
transfer over the spectrum in this subdomain drops.

Region IV is the classical inertial interval. Here there 1is
neither influx or loss »f energy. The rate of transfer of energy
over the spectrum in inertial interval is constant and is equal to
the rate at which turbulent energy passes over the right boundary of
the irertial to thermal intervals — rate of dissipation €q

Region V 1s the viscous interval, where kinetic energy, the
energy of turbulence, is converted to heat. In this regior the rate
of eneprgy transfer over the spectrum drops io zero.

7n accordance witnh changes of rate ol transfer of energy over
the spectrum in different regions the form of spectral curve will also
be changed,
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From the assumption about homogeneity and local isotropy
Keimagorov and Obukhov obtained an expression for the enevrgy spectrum
of turbulence in the inertial interval — the "-5/3" spectral law

2.3
S@e'e ?, (8)

If by definivion in the inertial interval there are no
sources and consumers of turblent energy, but only inertial transfer
of energy over the spectrum from larger scales to smaller takes place,
then in the interval of equilibrium (region II) both sources and
consumers of turbulent energy, wnich, however, compensate one another,
are at work. 1In splte of the fact that in the interval of quasi-
equilibrium the condition of local isotropy is known not tc be net,
the spectrum in this interval also is described by the expression:

olw

S °, (9)

The expression for the spectrum in the viscous iaterval 1is
obtained from the Geisenberg equation [5] and has the form:

S@)cos". (10)

As regards the subdomain of buoyancy, the spectral curve here has slope

greater than 5/3 and is described, according to [3], by expression:

8 e
S@oo2 ‘(1462 ). (i1)

IT1T. Discrete Spectra. Wave Disturbances in
the Atmosphere

Everything said above pertains to continuous spectra. However,
among experimentally obtained spectra there also are such in which

turbulent metion in a wide range of scales 1s lacking. More precisely,

this motion have amplitudes smaller than the threshold of sensitivity
of the measuring equipment. Such discrete spectra are due o the
presence of stable wave disturbances, not transmitting their energy
to smaller scales.

kg

~

o m . ——— S Rae s e s n A e e A MDA S v A = e mE_— e o e

o= - mama Y

et

e S— .

;
FOPOFE I N



T RN S e AL ST v Bt R T T B I T e 2 e

RS ARRILK |

Sometimes the spectrum, continuous at wave numbers 2<%, sharply
drops when 858: In this case one should either recognize that the

assumption ahout energy transfer in the continous spectrum from larger H
scales to smaller is not satisfied or should assume the presence of §
conversion of kinetic energy pulsations when a8, to so;ne other T '

form-of energy.
we will, as before, consider that in turbulent flow anerg; !
As already !

transiér from larger scales to smaller takes place,
‘statéd, growth of the rate of energy tramrer‘aQ indicates the
ﬁresence cf a scurce of turbhulent erergy and, conversely, 2 decrease

of eg indicatas the presesnce of a consumer.

;. S boh V‘rﬁ;“,“ ey

‘When spectrum of turbulence, and consequently and s, =f(Q), are :
continuous, such description, in general, is trivial. However, quite
picture is obtained 1f with the same assumption about the

'-\ggi?’ el vt ;

ancther
direction of ‘energy flow in the spectrum we turn to consideration of B
stable wave disturbances in a real medium, i.e., in a medium ?%
pqssea_gsig)g ;diss_ipative properties (for example, viscosity}. , f;%:
-Iet us examine forced oscillations of alr with freguency § ig
PE

We know that 1f the socurce oY these

oseillations ceases to act, the oscillations will fade with time
Let us try to analyae

PR

owlng to internal friction (viscosity) of air.
the meaning of this. o - :

-’

A 7 SO T2

N IR
or

in air mass has defined wiscosliy y, depending on temperature and
density. Molecules of air are in random motion, where the number of
molecules in a unit volume and She r average veloclity determine the

- -

-

E éérféégbnding to wave number Q.
E
g

i
+
IR T

i1

viécosiby of the air.

P
AN e ddin bz &) " e, Arnl
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2
2 '7:%
p o " When we say that oscillation of air fsde, it means thal the

mechanical energy of these oscillations turns to energy of molecular

motion.

in the atmosphere, 1t

If continuous wave os¢illations exist
active external source.

means that they are supperted cotistantly by an
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The scale of disturbances generated by this source should, in any case,
be no less than the length of the continuous wave. Consdquentiy, in
case of stable wave disturbances also the spectyral energy flow ]
preserves 1t direction toward larger wave numbérs, and erepgy going-
to larger scaies ls transferred to the region of submolecular '

scales. The spectrum in this case 1is discrete and has the form

presenteé in Pig. 4,

gsa -

Fig. L. Spectrum of purely
wave disturbance in viscous
medium.

‘On the axis of absclissas to the first peak corresponds the
wavelength of stabie oscillation; to the second correzponds the
value of the order of the mean Iree path of molecules.

Thus if the medium possesses viscosifty, "sucking out" of
energy of any mechanical motion appearing in this medium wiil occur.
It is possible to apply the same reasoning to a medium in which
random motion with scales much liarger than mciecular exists, that is,
to a medium possessing turbulent viscosity. If in an air mass there
already are movements of defined scales, the intensity of trese move-
ments can lncrease directly as a result of energy cf other mechanicsl
motion, even if its scaie is much greater. From this stand point
it 1s easy to explain the character of the spectral curve obtained
by Van der Hoven [7], having dips over a wide rangé of wave numbers.

Let us now consider éases when the spettrum is centinuous over
a rather wide range of wave numbers, but then drops sharply.

In examining of such rapidiy dropping spectra we wili, as
earlier, consider that spectral energy fiow is directed toward larger

wave numbers.. Inasmuch as such spectra are characteristic for stadly
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.lapge wind gradients are necessary.

‘;‘ of finite length for practical purposes will not differ from the
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stratified atmosphere, one should assume tha% rapld drop of spectreum :
is*bxplained by the influonce cf forces of buoyancy, which consume
alnost all the energy arriving from the direction of smaller wave

numbers. - |
IV, Turbulence in a Thermally Stable
- . ‘Stgatifigd Medlunm :
With strong thermal ‘stability of atmosphere which for example, g 3
{

i§~ﬁyp1cai of ‘the stratosphera, for disturbance of laminaristy flow
The very fact of appearance and

dév“lopment 3f turbulence in such « medium indicates that this
condition \1) is. fulfillad.

However, although the reserve of thermal statilisy is
ineufficiently ta 1mpede seneration of turhulence, the forces of
buoyancy intens ively" c@uzteract cascade energy transfer over the
speccrnm. Three eases, correspouding %o the three curves in Fig. 5

are possible here.

Sy et vm——nve e v v me o S e

G3®
,"& o
i FPig. 5. Modifications of
turbulence spectra for

different relationships

between intensities of
- -source and consumer of

turbulent energy and for

their dirferent character-

istic scales, .

o oo bon e o emes

i3 Hith very gtrong: thermal atability of medium the spectrum
or turbulence can be"iocalized in a narrow band of wave numbers. In

this case the spectrum obtained as a result of treatment of realization

,gpegcrdm of purely harmonic oscillation, if we use existing methods
" of -statistical computer treatment. Such f“guasi-wave" disturbances
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differ from those of "pure wave" type by the fact that in them energy
transfer from larger scales to smaller takes place, and then all
energy 1s expended on work against the forces of buoyancy.

Lve

2. With somewhat lesser thermal stability of atmosphere, as
well as with 1ts greater dynamic instability, and also in those cases
when the source cf turbulent energy is located in the region of wave :
numbers distant from the subdomain of buoyancy, the spectrum of 4 {
turbulence 1s found considerably broader and differs significantly
from the spectrum of purely harmonic oscillations, However, even in

this case the forces of buoyancy absorb all the kinetlic energy of
turbuient pulsations.

. 3. The most frequently encountvered case is that when thére 1is
a continuous spectrum or turbulence, in which kinetic energy is

. '§ P
transferred from larger scale tc smaller. Part of the energy becones 2

potential energy, and then in scales where the forces of buoyancy no
ionger play an essential role there is inertial transfer in accordance

with the "-5/3" law. 1In the end all energy turns to heat in the
viscous interval.

T A L T T e T

Diverse variants of spectra, shown in Fig. 5, are particular
cases of the general diagrami presented in Fig. 3, and eharacterize.
distribution of energy in the spectrum of developed turbulence, i.e.,
the stationary case. During .experimental investigations of turbulence
it sometimes is possible toc obtain spectra of developing or fading
turbuience. Such spectra have complicated form, and on them are

) distinctly seen Jocal (according to wave numbers) sources of

turbulent energy, such, for example, as disintigrating gravitational

’
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waves., i
For the spectrum of developed turublence in a stably stratified %g
medium it is characteristic that the scurce of turbulent energy :3
lies in the region of small wave numbers, while the spectral curve hg
itself has only one peak in the region of generation. §§
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